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Comments on free elastic energy for uniaxial nematic liquid crystals

Marek Andrzej Kojdeckia*, Jerzy Kędzierskib and Zbigniew Raszewskib

aInstitute of Mathematics and Cryptology, Military University of Technology, 00-908 Warsaw, Poland; bInstitute of Applied

Physics, Military University of Technology, 00-908 Warsaw, Poland

(Received 28 March 2009; final form 15 May 2009)

This paper concerns free elastic energy that is functional for static deformations of a nematic liquid crystal. The free
elastic energy density is analysed as a non-negative quadratic form of the first-order derivatives of the director. The
resulting conditions imply a system of inequalities to be held by Frank’s elastic moduli, which update Ericksen’s
inequalities. The rejection of surface-like free elastic energy terms from bulk free elastic energy is suggested on the
basis of both known and some new arguments.

Keywords: nematic liquid crystals; nematics elastic moduli; Frank’s elastic constant; free elastic energy for nematic

liquid crystals

1. Introduction

Fifty years ago Frank published the complete the-

ory of static elastic phenomena (Frank–Oseen the-

ory (1–3)) and forty years ago Leslie published the

complete theory of dynamic phenomena (Ericksen–
Leslie theory (4–7)) for uniaxial nematic liquid

crystals, interpreted as continuous media. During

the decades have passed since then, both theories

have been confirmed in numerous theoretical and

experimental works. In particular, it has been well

established that two three-dimensional vector fields, a

liquid velocity and a director, are sufficient for the

complete description of mechanical phenomena in
these materials. Stationary states of nematic liquid

crystals are described by a unit dimensionless vector

field n (with no defined sense), called a director,

which represents a locally-averaged direction of

nematic rode-like molecules. The corresponding

equations governing static deformations can be

derived as the Euler–Lagrange equations for a free

energy functional defining the constitutive relation-
ships for the nematics under study. Since nematics

are anisotropic liquids, these static deformations are

interpreted as equilibrium states of the director fields,

enforced in bulk by interactions of confining surfaces

and external forces, being referred to the stationary

states established by the boundary conditions only.

Let V be a volume filled with nematics, bounded

by a sufficiently smooth surface S in three-dimen-
sional real space equipped with Cartesian co-ordinates

x ¼ x1 ; x2 ; x3ð Þ. The free energy functional of con-

fined nematics influenced by external electric and

magnetic fields can be considered in the form of a

sum of the bulk and the surface functional

F ¼
ZZZ

V

fK þ fE þ fM þ fA þ fDð Þ dV

þ
ZZ
�
S

fS dS; ð1aÞ

or

F ¼
ZZZ

V

fK þ fE þ fMð Þ dV

þ
ZZ
�
S

fS þ fAS þ fDSð Þ dS: ð1bÞ

The bulk free-energy density consists of three basic

terms: the density of the elastic distortion energy fK ,

and the densities of the energy of interaction of
nematics with an electric or a magnetic field, fE

and fM . The densities fE and fM may be expressed

in the commonly accepted form, fE ¼ �1
2
E � D,

fM ¼ �1
2
H � B, with the well-known dependence of

electric fields E, D and the magnetic fields H, B on a

director field involving constitutive material con-

stants, and are not discussed in this work. The subject

of further consideration is the bulk free elastic energy
density, which has the commonly accepted basic

form, with the splay, twist and bend elastic moduli

(Frank’s constants k11; k22; k33 (2)):

fK ¼ 1
2

k11 � � nð Þ2þk22 n � � · nð Þð Þ2þk33 n · � · nð Þð Þ2
h i

;

ð2Þ
and the surface-like free elastic energy densities fD (in

the form introduced by Frank (2)) and fA (in the form

introduced by Nehring and Saupe (3)):
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fD ¼ �1
2

k22 þ k24ð Þ� � � � nð Þ nþ n · � · nð Þ½ �
¼ �1

2
k22 þ k24ð Þ� � � � nð Þ n� n � �ð Þ n½ �; ð3aÞ

fA ¼ k13 � � � � nð Þ n½ �: ð4aÞ

Two questions that remain under discussion (8–19) are

how to account for the second-order terms with

saddle-splay and splay-bend elastic constants k24 and

k13 and how to describe the boundary conditions with

the free-energy density of the nematics–substrate

interaction fS. These two questions are either
addressed in this work.

Under the assumption that the director field is

twice continuously differentiable and the continuous

field of unit external normal vectors � is defined on a

confining surface, two surface elasticity terms can be

accounted for in the free surface elastic energy func-

tional (1b) with the corresponding surface densities:

fDS ¼ �1
2

k22 þ k24ð Þ � � � � nð Þ n� n � �ð Þ n½ �; ð3bÞ

fAS ¼ k13 � � � � nð Þ n½ �: ð4bÞ

These two terms have been extensively discussed

recently (8–19). The free energy functional can be

considered if form (1a) involving terms (3a) or (4a)
or in form (1b) involving terms (3b) or (4b). Further,

let fF ; fK þ fD and fN ; fK þ fD þ fA.

2. Free elastic energy functional and elastic moduli for

nematic liquid crystals

2.1 Bulk free elastic energy density for nematic liquid
crystals

A director field corresponding to static deformations of

a nematic liquid crystal, which are enforced by the inter-

action of a confining surface S (i.e. boundary conditions)

and static external fields, should be a minimiser of the

free energy functional (1). This description is phenomen-

ological by interpreting liquid crystal as a material con-
tinuum. A nematic liquid crystal, being an amorphous

anisotropic liquid without a specific shape like a solid, is

very unlikely to be a non-simple material, which is char-

acterised by the free elastic energy functional involving

higher-order derivatives of a defining field for describing

strong deformations. Strong distortions in such contin-

uous media can hardly be imagined. Thus, the free elastic

energy functional for nematics should be constructed
consequently as a non-negative quadratic form of only

first-order derivatives of the director. If it were to be

updated with second-order director derivative terms, it

should be the sum of two non-negative quadratic forms.

In every case this construction should lead to formulat-

ing governing equations in the form of Euler–Lagrange

equations and well-posed initial-boundary value (evolu-

tional) problems or boundary value (static) problems.

To resume possible forms of the bulk free elastic

energy for nematics, the following symbols related to

Cartesian co-ordinates x ¼ x1 ; x2 ; x3ð Þ will be used.
Director n xð Þ; n1 x1 ; x2 ; x3ð Þ ; n2 x1 ; x2 ; x3ð Þ ;ð

n3 x1 ; x2 ; x3ð ÞÞ, nj j ¼ 1 is a unit dimensionless vec-

tor with no defined sense; derivatives are denoted

with subscripts @i ; @
@xi

, @jni ; ni;j,� ; @1 ; @2 ; @3ð Þ,
�g ¼ grad g ¼ ðg;iÞ ¼ ðg;1 ; g;2 ; g;3Þ for a differenti-

able scalar field g, � � n ¼ div n ¼ n1;1 þ n2;2 þ n3;3;

� · n¼ rot n¼ curln

¼ n2;3� n3;2 ; n3;1� n1;3 ; n1;2� n2;1

� �
;

�n¼ n1;1 ; n1;2 ; n1;3 ; n2;1 ; n2;2 ; n2;3 ;n3;1 ; n3;2 ; n3;3

� �
ð5Þ

is used instead of

�n¼
n1;1 n2;1 n3;1

n1;2 n2;2 n3;2

n1;3 n2;3 n3;3

2
4

3
5; �nk k;

X3

i¼1

X3

j¼1

ni;j

� �2

" #1
2

:

The summation over repeated indices is further

assumed, e.g. ni;jni;j;
P3
i¼1

P3
j¼1

ni;jni;j.

For a director as a unit dimensionless vector field,

the following equalities hold under assumption of

once or twice continuous differentiability:

nini ¼ 1; � ninið Þ ¼ 0 or nini;j ¼ 0 ; j ¼ 1; 2; 3;
n · � · nð Þ ¼ � n � �ð Þ n;

ð6Þ

� � � � nð Þ nþ n · � · nð Þð Þ ¼ @i ninj;j � njni;j

� �
¼ ni;inj;j þ ninj;ji � nj;ini;j � njni;ji

¼ ni;inj;j � nj;ini;j: ð7Þ

The simplest quadratic form of the first-order

director derivative, being the sum of its squares, can

be decomposed into four parts (17, 18):

�nk k 2 ¼ � � nð Þ2þ � · nð Þ2�� � � � nð Þ n� n � �ð Þ nð Þ
¼ � � nð Þ2þ n � � · nð Þð Þ2þ n · � · nð Þð Þ2

� � � � � nð Þ nþ n · � · nð Þð Þ
¼ ni;inj;j þ ni;jni;j � ni;jnj;i � njnkni;jni;k

� �
þ njnkni;jni;k � ni;inj;j � nj;ini;j

� �
;

¼ ni;jni;j ð8Þ

three of which can be recognised in the basic form of

free elastic energy density with three Frank’s elastic

moduli (2, 17, 18):
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fK n;�nð Þ ¼ 1
2
k11 � � nð Þ2þ 1

2
k22 n � � · nð Þð Þ2

þ 1
2
k33 n · � · nð Þð Þ2

¼ 1
2
k11ni;inj;j

þ 1
2
k22 ni;jni;j � ni;jnj;i � njnkni;jni;k

� �
þ 1

2
k33njnkni;jni;k:

¼ 1
2
k11ni;inj;j þ 1

2
k22ni;jni;j

þ 1
2

k33 � k22ð Þnjni;jnkni;k

� 1
2
k22ni;jnj;i: ð9Þ

This functional has a very specific feature, which

constitutes nematic liquid crystals as a unique class

of continua, namely the Helmholtz decomposition

of the director, which relates its intrinsic structure.

According to the Helmholtz theorem (cf. e.g. (20)),

a three-dimensional differentiable vector field,

defined on the whole space and vanishing at infinity

or defined on a connected domain confined by a
sufficiently smooth surface, may be uniquely decom-

posed into two additive parts, one of which being

irrotational (with a possible harmonic part con-

tained therein) and the other being solenoidal.

A vector may be thus written as the sum of the

gradient of a scalar potential (the irrotational part

with a null curl) and the curl of a vectorial potential

(the solenoidal part with a null gradient). Let
n ¼ pþ s, � · p ¼ 0 and � � s ¼ 0. Then,

fK n;�nð Þ ¼ 1
2
k11 � � pð Þ2þ 1

2
k22 pþ sð Þ � � · sð Þð Þ2

þ 1
2
k33 pþ sð Þ · � · sð Þð Þ2: ð10Þ

In this functional, the derivatives of a director are

grouped into three terms: the scalar gradient

� � n ¼ � � p (for a splay deformation) and two

components of the vectorial curl, parallel to a
director n � � · nð Þð Þ n ¼ n � � · sð Þð Þ n (for a twist

deformation) and perpendicular to a director

n · � · nð Þ ¼ n · � · sð Þ (for a bend deformation).

With the three constitutive constants being posi-

tive, k11; k22; k33 > 0, the functional (11) is a non-

negative definite. It is positive-valued for all

director fields with non-null irrotational or

solenoidal parts and becomes null only for har-
monic fields that satisfy both equalities � � n ¼ 0

and � · n ¼ 0. The equilibrium of a stationary

state of a nematic is influenced by a balance

between these two components of a director,

defined by the magnitudes of the constitutive con-

stants k11; k22; k33 for splay, twist and bend.

Evidently, the introduction of an additional term

into formula (10) would interfere and perturb this
particular structure. Frank left the component (7)

with the fourth saddle-splay elastic constant k24,

since the term fD (3) might not be eliminated by

accounting symmetry relations defining a uniaxial

nematic liquid crystal, and has written the elastic

free-energy density (2, 17) as:

fF n;�nð Þ ¼ 1
2
k11 � � nð Þ2þ 1

2
k22 n � � · nð Þð Þ2

þ 1
2
k33ðn · ð� · nÞÞ2

� 1
2

k22 þ k24ð Þ� � � � nð Þnþ n · � · nð Þð Þ
¼ 1

2
k11ni;inj;j

þ 1
2
k22ðni;jni;j � ni;jnj;i � njnkni;jni;kÞ

þ 1
2
k33njnkni;jni;k

� 1
2

k22 þ k24ð Þðni;inj;j � nj;ini;jÞ
¼ 1

2
k22 þ k24ð Þ �nk k 2

þ 1
2

k11 � k22 � k24ð Þ � � nð Þ2

þ 1
2
�k24ð Þ n � � · nð Þð Þ2

þ 1
2

k33 � k22 � k24ð Þ n · � · nð Þð Þ2:
¼ 1

2
k11 � k22 � k24ð Þni;inj;j þ 1

2
k22ni;jni;j

þ 1
2

k33 � k22ð Þnjni;jnkni;k þ 1
2
k24nj;ini;j:

ð11Þ

The term fD (3), in his original notation, contains only

the first-order derivative of a director, and may be

transformed into a second-order term by virtue of for-

mula (7). Some one-constant, two-constants or three-

constant variants of formula (11) can be considered.

The one-constant approximations are:

k11 ¼ k22 ¼ k33 ¼ k; k24 ¼ 0

and then fF n;�nð Þ ¼ 1
2
k �nk k 2;

k11 ¼ k22 ¼ k33 ¼ k; k24 ¼ �k22

and then fF n;�nð Þ ¼ 1
2
k ðð� � nÞ2 þ � · nð Þ2Þ:

The two-constant approximations are:

k22 ¼ k33; k24 ¼ k11 � k22 and then

fF n;�nð Þ ¼ 1
2
k11ð �nk k 2�ð� · nÞ2Þ þ 1

2
k22 � · nð Þ2;

k22 ¼ k33; k24 ¼ �k22 and then

fF n;�nð Þ ¼ 1
2
k11 � � nð Þ2þ1

2
k22 � · nð Þ2:

The three-constant forms are:

with k24 ¼ 1
2

k11 � k22ð Þ (supposed by Nehring and

Saupe (3))

fF n;�nð Þ ¼ 1
4

k11 þ k22ð Þ �nk k 2þ1
4

k11 � k22ð Þ � � nð Þ2

� 1
4

k11 � k22ð Þ n � � · nð Þð Þ2

þ 1
4

2k33 � k11 � k22ð Þ n · � · nð Þð Þ2;
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with

k24 ¼ 0 : fF n;�nð Þ ¼ 1
2
k22 �nk k2þ 1

2
k11 � k22ð Þ � � nð Þ2

þ 1
2

k33 � k22ð Þ n · � · nð Þð Þ2;

with k24 ¼ �k22 (basic form):

fK n;�nð Þ ¼ 1
2
k11 � � nð Þ2þ 1

2
k22 n � � · nð Þð Þ2þ 1

2
k33

· n · � · nð Þð Þ2:

These forms are non-negative definite under

condition k > 0 or k33 > k11 > k22 > 0 or only

k33; k22 ; k11 > 0 (17–19). Term fD (3) makes it possi-

ble to recover the free elastic energy density to a form

close to (8), preserving all of the four principal groups
of first-order derivatives of the director.

Nehring and Saupe (3) have introduced another

second-order term fA (3), which may not be trans-

formed into a first-order term:

fN n;�n;� �nð Þð Þ
¼ 1

2
k11 � � nð Þ2þ 1

2
k22 n � � · nð Þð Þ2þ 1

2
k33 n · � · nð Þð Þ2

� 1
2

k22 þ k24ð Þ� � � � nð Þ nþ n · � · nð Þð Þ
þ k13� � � � nð Þ nð Þ:
¼ 1

2
k11 � k22 � k24ð Þni;inj;j þ 1

2
k22ni;jni;j

þ 1
2

k33 � k22ð Þnjni;jnkni;k þ 1
2
k24nj;ini;j

þ k13 ni;inj;j þ ninj;ji

� �
: ð12Þ

During the recent half-century many attempts, both

theoretical and experimental, have been made to verify
which form of this functional is adequate. Some con-

clusions can be formulated, based on the results pub-

lished to date. The magnitudes of the three Frank’s

elastic constants, being on order of 10 pN, differ

from each other and for all known nematic liquid

crystals k33>k11>k22>0 or (much less frequently)

k11>k33>k22>0; a material with equal constants has

not been found (21, 22). Attempts at determining the

magnitudes of these constants, concerning models of
molecular interactions, lead to partially contradictory

conclusions and rather imprecise values (if any). The

question of the significance of surface-like elasticity

terms (3) and (4) is still ambiguous (8–19).

Experiments performed to determine these values

have resulted in unclear or negative conclusions.

Another important and partially resolved question is

the proper description of a nematics–substrate interac-

tion and methods for its experimental verification (23).

Some discussion is added below.

2.2 Non-negativity of bulk free elastic energy density
for nematic liquid crystals as quadratic forms of
director derivatives

The free elastic energy density with four Frank’s elastic

moduli (without second-order terms) is postulated to be

a non-negative quadratic form of the first-order deriva-

tives of a director �n¼ n1;1; n1;2; n1;3; n2;1; n2;2;
�

n2;3; n3;1; n3;2; n3;3Þ:

fF n;�nð Þ ¼ 1
2

�nð ÞM �nð ÞT ; ð13Þ

with a symmetric form matrix M. This matrix follows

from the general expression with four elastic constants

developed by Frank (2) (originally by considering a

particular case when n ¼ 0; 0; 1ð Þ). Frank’s result is

the point of departure for the following considera-

tions. Let the free elastic energy density be given in

the form (11):

fF n;�nð Þ ¼ 1
2

k11 � k22 � k24ð Þni;inj;j þ 1
2
k22ni;jni;j

þ 1
2

k33 � k22ð Þnjni;jnkni;k þ 1
2
k24nj;ini;j:

Let K1;k11; K2;k22 ; K3;k33 ; K4;k24 ; K5;k33

�k22 ; K6;k11� k22� k24 and uij;K5ninj. Then M

takes the form

K1 þ u11 u12 u13 0 K6 0 0 0 K6

u12 K2 þ u22 u23 K4 0 0 0 0 0

u13 u23 K2 þ u33 0 0 0 K4 0 0

0 K4 0 K2 þ u11 u12 u13 0 0 0

K6 0 0 u12 K1 þ u22 u23 0 0 K6

0 0 0 u13 u23 K2 þ u33 0 K4 0

0 0 K4 0 0 0 K2 þ u11 u12 u13

0 0 0 0 0 K4 u12 K2 þ u22 u23

K6 0 0 0 K6 0 u13 u23 K1 þ u33

2
6666666666664

3
7777777777775
: ð14Þ

Firstly, the non-negativity of this quadratic form

will be examined without accounting constraints

following from the director definition. The condi-
tions for positive or non-negative definiteness of this

form and its matrix may be easily obtained by con-

sidering special cases of nematic orientations. They

follow from requiring positive or non-negative

values of the determinants of the principal subma-

trices of matrix M.
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For n ¼ 0; 0; 1ð Þ one obtains M equal to

K1 0 0 0 K6 0 0 0 K6

0 K2 0 K4 0 0 0 0 0

0 0 K3 0 0 0 K4 0 0

0 K4 0 K2 0 0 0 0 0

K6 0 0 0 K1 0 0 0 K6

0 0 0 0 0 K3 0 K4 0

0 0 K4 0 0 0 K2 0 0

0 0 0 0 0 K4 0 K2 0

K6 0 0 0 K6 0 0 0 K1 þ K5

2
6666666666664

3
7777777777775
:

This matrix is positive (non-negative) definite if its

principal determinants are positive (non-negative):

(1) K1 > 0;
(2) K1 � K2 > 0;
(3) K1 � K2 � K3 > 0;
(4) K1 � K3 � K2

2 � K4
2

� �
> 0;

(5) K1
2 � K1 � K2 � K4ð Þ2

h i
� K3 � K2

2 � K4
2

� �
> 0 or

2K1 � K2 � K4ð Þ � K2 þ K4ð Þ � K3 � K2
2 � K4

2
� �

> 0;

(6) K1
2 � K1 � K2 � K4ð Þ2

h i
� K3

2 � K2
2 � K4

2
� �

> 0;

(7) K3 � K1
2 � K1 � K2 � K4ð Þ2

h i
� K2 � K3 � K4

2
� �

�
K2

2 � K4
2

� �
> 0;

(8) K1
2 � K1 � K2 � K4ð Þ2

h i
� K2 � K3 � K4

2
� �2�

K2
2 � K4

2
� �

>0;

(9)
K2 � K3 � K4

2
� �2� K2

2 � K4
2

� �
�
n

K1 � K1 � K2 þ K3 þ 2K4ð Þ � K2 þ K4ð Þ2
h i

� K1 � K2 � K4ð Þ2� K2 þ K3 þ 2K4ð Þ
o

> 0;

or equivalently

K2 � K3 � K4
2

� �2� K2
2 � K4

2
� �

� K2 þ K4ð Þ�
K1 � K2 � K4ð Þ � K2 þ K3 þ 2K4ð Þ þ K1 � K3 þK4ð Þ½ � > 0.

These conditions imply the following constraints

for the elastic moduli: K1 > 0; K2 > 0; K3 > 0;

K2
2 � K4

2 > 0; 2K1 � K2 � K4 > 0; K2 � K3 � K4
2 > 0;

and K1 � K2 � K4ð Þ � K2 þ K3 þ 2K4ð Þ þ K1 � K3 þ K4ð Þ > 0.
With K4 ¼ �K2, which corresponds to the

energy density with three Frank’s elastic constants

fF ¼ fK ; fD ¼ 0, the inequalities (4)–(9) may be

satisfied in the weak form only and take the form

of identity 0 ¼ 0; the inequalities (1)–(3) imply the

conditions K1 > 0, K2 > 0 and K3 . 0.

For n = (0, 1, 0), one obtains M equal to

K1 0 0 0 K6 0 0 0 K6

0 K3 0 K4 0 0 0 0 0

0 0 K2 0 0 0 K4 0 0

0 K4 0 K2 0 0 0 0 0

K6 0 0 0 K1 þ K5 0 0 0 K6

0 0 0 0 0 K2 0 K4 0

0 0 K4 0 0 0 K2 0 0

0 0 0 0 0 K4 0 K3 0

K6 0 0 0 K6 0 0 0 K1

2
6666666666664

3
7777777777775
:

This matrix is positive (non-negative) definite if the
principal determinants are positive (non-negative):

(1) K1 > 0;
(2) K1 � K3 > 0;
(3) K1 � K2 � K3 > 0;
(4) K1 � K2 � K2 � K3 � K4

2
� �

> 0;

(5) K2 � K1 � K1 � K2 þ K3ð Þ � K1 � K2 � K4ð Þ2
h i

� K2 � K3 � K4
2

� �
> 0 or K2 � K1 � K2 þ K3 þ 2K4ð Þ½

� K2 þ K4ð Þ2
i
� K2 � K3 � K4

2
� �

>0;

(6) K2
2 � K1 � K1 � K2 þ K3ð Þ � K1 � K2 � K4ð Þ2
h i

� K2 � K3 � K2
4

� �
> 0;

(7) K2 � K1 � K1 � K2 þ K3ð Þ � K1 � K2 � K4ð Þ2
h i

� K2 � K3 � K4
2

� �
� K2

2 � K4
2

� �
> 0;

(8) K1 � K1 � K2 þ K3ð Þ � K1 � K2 � K4ð Þ2
h i
� K2 � K3 � K4

2
� �2� K2

2 � K4
2

� �
> 0;

(9) K2 � K3 � K4
2

� �2� K2
2 � K4

2
� �

�
fK1 � ½ K1 � K2 þ K3ð Þ�
K2 þ K3 þ 2K4ð Þ � K3 þ K4ð Þ2�
� K1 � K2 � K4ð Þ2� K2 þ K3 þ 2K4ð Þg > 0

or equivalently

K2 � K3 � K4
2

� �2� K2
2 � K4

2
� �

� K2 þ K4ð Þ�
½ K1�K2�K4ð Þ� K2þK3þ2K4ð ÞþK1� K3þK4ð Þ�>0:

These conditions imply the following constraints

for the elastic moduli: K1 > 0; K2 > 0; K3 > 0;

K2
2�K4

2 > 0; K1� K2þK3þ2K4ð Þ K2þK4ð Þ2 >0;K2 �K3

�K4
2 > 0; and K1�K2�K4ð Þ� K2þK3þ2K4ð ÞþK1 � K3ð

þK4Þ > 0.

With K4 ¼ �K2, which corresponds to the

energy density with three Frank’s elastic constants
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fF ¼ fK ; fD ¼ 0, the inequalities (7)–(9) may be

satisfied in the weak form only and take the form

of identity 0 = 0; the inequalities (1)–(6) imply the

conditions K1>0, K2>0 and K3 � K2>0.

For n ¼ 1; 0; 0ð Þ, one obtains M equal to

K1 þ K5 0 0 0 K6 0 0 0 K6

0 K2 0 K4 0 0 0 0 0

0 0 K2 0 0 0 K4 0 0

0 K4 0 K3 0 0 0 0 0

K6 0 0 0 K1 0 0 0 K6

0 0 0 0 0 K2 0 K4 0

0 0 K4 0 0 0 K3 0 0

0 0 0 0 0 K4 0 K2 0

K6 0 0 0 K6 0 0 0 K1

2
6666666666664

3
7777777777775
:

This matrix is positive (non-negative) definite if the

principal determinants are positive (non-negative):

(1) K1 � K2 þ K3 > 0;
(2) K1 � K2 þ K3ð Þ � K2 > 0;
(3) K1 � K2 þ K3ð Þ � K2

2 > 0;
(4) K1 � K2 þ K3ð Þ � K2 � K2 � K3 � K4

2
� �

> 0;
(5) K2 � K1 � K1 � K2 þ K3ð Þ � K1 � K2 � K4ð Þ2

h i
� K2 � K3 � K4

2ð Þ>0

or K2 � K1 � K2 þ K3 þ 2K4ð Þ � K2 þ K4ð Þ2
h i

� K2 � K3 � K4
2ð Þ>0;

(6) K2
2 � K1 � K1 � K2 þ K3ð Þ � K1 � K2 � K4ð Þ2
h i

� K2 � K3 � K4
2ð Þ>0;

(7) K2 � K1 � K1 � K2 þ K3ð Þ � K1 � K2 � K4ð Þ2
h i

� K2 � K3 � K4
2ð Þ2>0;

(8) K1 � K1 � K2 þ K3ð Þ � K1 � K2 � K4ð Þ2
h i
� K2 � K3 � K4

2ð Þ2� K2
2 � K4

2ð Þ>0;

(9)
K2 � K3 � K4

2
� �2� K2

2 � K4
2

� �
� K2 þ K4ð Þ � ½ 2K1 � K2 � K4ð Þ
� K1 � K2 þ K3ð Þ � 2 K1 � K2 � K4ð Þ2�>0

or equivalently

K2 � K3 � K4
2ð Þ2� K2

2 � K4
2ð Þ � K2 þ K4ð Þ�

½ K1 � K2 � K4ð Þ � K2 þ K3 þ 2K4ð Þ þ K1

� K3 þ K4ð Þ�>0:

These conditions imply the following constraints for

the elastic moduli: K1 � K2 þ K3 > 0; K2 > 0;

K2
2 � K4

2>0; K1 � K2 þ K3 þ 2K4ð Þ � K2 þ K4ð Þ2 > 0;

K2 � K3 � K4
2 > 0; and (K1 - K2 - K4) � (K2 + K3 +

2K4) + K1 � (K3 + K4) . 0.

With K4 ¼ �K2, which corresponds to the energy

density with three Frank’s elastic constants

fF ¼ fK ; fD ¼ 0, the inequalities (8)–(9) may be satis-

fied in the weak form only and take the form of

identity 0 = 0; the inequalities (1)–(7) imply the condi-

tions K1>0, K2>0 and K3 � K2>0.

It follows from the conditions for positive (or non-

negative) definiteness in all these particular co-ordi-

nate system orientations that the form matrix (and free

elastic energy density functional) is positive definite if

the following inequalities hold:

K1 > 0; K2 > 0; K3 > 0; K2
2 � K4

2 > 0;
2K1 � K2 � K4 > 0; K1 � K2 þ K3 > 0;

K2 � K3 � K4
2 > 0; K1 � K2 þ K3 þ 2K4ð Þ

� K2 þ K4ð Þ2 > 0; K1 � K2 � K4ð Þ
� K2 þ K3 þ 2K4ð Þ þ K1 � K3 þ K4ð Þ > 0:

ð15Þ

The five first conditions are Ericksen inequalities (4).
The non-negativity is guaranteed if these inequalities

are satisfied in the weak form. In the case when

K4 ¼ �K2, two of these inequalities can hold only in

the weak form and become identities 0 = 0, while the

others are equivalent to the inequalities

K1 > 0; K2 > 0; K3 � K2 > 0: ð16Þ

These conditions characterise the quadratic form

fF n;�nð Þ ¼ 1
2

�nð ÞM �nð ÞT for arbitrary magnitudes of

the components of the director derivative �n, that are

treated as linearly independent when the constraints

following from the assumption nj j ¼ 1 are not

accounted for. The assumption nini ¼ 1 yields three

linear constraints for ni;j (6) and then only six of the

nine first-order derivatives of the director components
are linearly independent. For n ¼ 0; 0; 1ð Þ with

n3;j ¼ 0, j ¼ 1; 2; 3, the necessary and sufficient

conditions for non-negative definiteness of

fF n;�nð Þ ¼ 1
2

�nð ÞM �nð ÞT reduce to requiring non-

negativity of the first six principal determinants of the

matrix M, which imply Ericksen’s inequalities: K1 � 0;

K2 � 0; K3 � 0; K2
2 � K2

4 � 0; and 2K1 � K2 � K4 � 0

(3, 17–19), usually written as

K1 � 0; K2 � 0; K3 � 0; K2j j � K4j j;
K1j j � K1 � K2 � K4j j: ð17Þ

For K4 ¼ �K2 Ericksen’s inequalities reduce to three

inequalities

K1 � 0; K2 � 0; K3 � 0: ð18Þ

The same conditions one obtains after re-

organising matrix M are in accordance with

�n ¼ ðn1;1 ; n1;2 ; n1;3 ; n3;1 ; n3;2 ; n3;3 ; n2;1 ; n2;2 ; n2;3Þ
for n ¼ 0; 1; 0ð Þ with n2;j ¼ 0, j ¼ 1; 2; 3, or

�n ¼ ðn2;1 ; n2;2 ; n2;3 ; n3;1 ; n3;2 ; n3;3 ; n1;1 ; n1;2 ; n1;3Þ
for n ¼ 1; 0; 0ð Þ with n1;j ¼ 0, j ¼ 1; 2; 3.
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The conditions (15) were deduced for nine-dimen-

sional vector space and include all of Ericksen’s con-

ditions (17), deduced for six-dimensional subspace

(with three linear constraints). Systems of inequalities

(18) and (16) differ only in the last one, which for

derivatives of arbitrary three-dimensional vector fields

yields K3 � K2 � 0. This inequality is satisfied for all

known nematic liquid crystals (cf. e.g. (21, 22)).
Moreover, it follows from one of the inequalities

(15), K2 � K3 � K4
2 � 0 (which yields the inequality

K3 � K2 � 0), that for K3<K2 it has to be K4j j<K2

and fD�0. In view of the properties of real nematics,

the last assertion could be treated as an argument for

taking fD ¼ 0. It is difficult to decide which systems of

inequalities, (15), (16) or (17), (18), approximates phy-

sical reality better.

2.3 Saddle-splay elastic constant

The above considerations on the surface-like term fD

in the free elastic energy density for nematic liquid

crystals are summarised in this section.
The saddle-splay component (4) of the free-

energy density is rather apparently a second-order

term, since it can be expressed, using only first-

order derivatives of the director components, as a

quadratic form (cf. (2, 17–19)). Moreover it is a null

Lagrangian (17, 18) that does not contribute to bulk

free energy and can be accounted for in the form of

a surface integral, as in (1b). It contains the rest of
the quadratic terms involving first-order director

derivatives that are necessary for obtaining the free

elastic energy in the simplest form of the sum of the

squares of all director derivatives, when one-con-

stant approximation is assumed. However, such

approximation is evidently not suitable for describ-

ing nematics, since the splay, bend and twist con-

stants are different for real materials. Moreover, the
basic form of the free elastic energy with three

elastic moduli involves all partial derivatives of all

director components in the form of curl and diver-

gence and is sufficient to describe a director

uniquely and adequately. Concerning the free elastic

energy functional with the density fK (1b) as well as

fK þ fD (1a) leads to a well-posed boundary-value

problem for non-linear Euler–Lagrange differential
equations (17–19).

2.4 Splay-bend elastic constant

The splay-bend component (4) of the free-energy

density causes serious problem with minimisation of

the functional (1a) or (1b) (8–17). The functional

becomes unbounded from below and a resulting
boundary-value problem for the Euler–Lagrange

equations (describing static deformations) is ill-

posed (8, 9, 13–15, 17–19). Moreover, the second-

order term (4) cannot be transformed into a first-

order term, contrary to the term (3), but it is still a

null Lagrangian that contributes only to the surface

free energy. Nehring and Saupe (3) introduced it in a

rather unusual way, by expanding nematics deforma-
tion using the Taylor formula with a second-order

derivative and introducing this expansion into the

free energy functional; this led to the conclusion

that the linear term with second-order director deri-

vatives is of the same magnitude order as the other

quadratic terms with first-order director derivatives.

The method they used for developing the elastic

energy density resulted in an intrinsic contradiction;
one of two terms originated from the same derivative

of the energy density with corresponding coefficient

was dropped (the term linear respective first-order

derivative of the director), while the other was pre-

served (the term linear respective second-order deri-

vative of the director). This method is incompatible

with the general rule of elasticity theory; a free energy

functional should be postulated consequently as a
sum of quadratic (at least non-negative definite)

forms of derivatives of subsequent orders of a gov-

erning field. Frank (2), in his considerations, did not

account for such a term. By accounting for second-

order terms consequently, one achieves well-posed

boundary-value problems (16, 18). The experiments

for determining saddle-splay and splay-bend elastic

constants resulted in rather unclear conclusions (24).
Experimental arguments for rejecting this splay-

bend term were found from studying planar deforma-

tion states enforced in planar cells by a static electric

field (25, 26). It was demonstrated that an accurate

determination of the boundary condition (i.e. the

anchoring characteristics), together with the elastic

constants, enabled one to describe planar deformation

states of a nematics layer quantitatively and precisely.
The boundary-free energy functional depending only

on the boundary value of the tilt angle and not on its

derivative was sufficient for characterising nematics–

substrates interaction adequately and quantitatively.

The simulation of the optical retardation, using the

same magnitudes of splay and bend elastic constants

and anchoring characteristics for nematic cells with

thicknesses from 13:9 �m to 64:5 �m (26) (and with
thicknesses from 1:9 �m to 31:2 �m (27)), resulted in

reproducing the measured values with the accuracy

being inferior to experimental errors. It implied no

dependence of the bulk elastic constants on the

nematic cell thickness and no need to exploit surface-

like elastic constants (and corresponding free elastic

energy terms) to describe nematics as material

continua.
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3. Conclusions

Some additional relations between four bulk elastic

constants of nematics can be derived as conditions

for non-negative definiteness of the free elastic energy
functional. One suggests that the surface-like second-

order elastic terms can be omitted from the free elastic

energy functional and considered as surface terms

together with boundary conditions. A formulation of

these conditions that leads to a well-posed boundary-

value problem is a separate question, the solution of

which must be based on experimental results. The bulk

free elastic energy density should be concerned in its
basic form with three Frank elastic constants.

Accounting only for the boundary free-energy density

seems enough to describe the stationary states of the

nematics quantitatively when the anchoring character-

istics are determined from experimental observations

of nematic liquid crystal cells.
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(25) Kędzierski, J.; Kojdecki, M.A.; Raszewski, Z.;
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